Haz una pregunta
  Foros de Electrónica » Diseño digital » Microcontroladores y sistemas embebidos
Foros Registrarse ¿Olvidaste tu contraseña?

Temas similares

21/01/2010 #1


Programa para transforma sonido en assembler
Ola!!!
He visto un post mas atras de Generar sonido para pic, pero no encuentro el programa para pasarlo.
Me podriais decir un programa que haga tal funcion.
21/01/2010 #2

Avatar de Meta

Respuesta: Programa para transforma sonido en assembler
Lo puedes hacer tu mismo hasta con retardos.

Código:
;**************************** Librería "RETARDOS.INC" *********************************
;
;    ===================================================================
;      Del libro "MICROCONTROLADOR PIC16F84. DESARROLLO DE PROYECTOS"
;      E. Palacios, F. Remiro y L. López.        www.pic16f84a.org
;       Editorial Ra-Ma.  www.ra-ma.es
;    ===================================================================
;
; Librería con múltiples subrutinas de retardos, desde 4 microsegundos hasta 20 segundos. 
; Además se pueden implementar otras subrutinas muy fácilmente.
;
; Se han calculado para un sistema microcontrolador con un PIC trabajando con un cristal
; de cuarzo a 4 MHz. Como cada ciclo máquina son 4 ciclos de reloj, resulta que cada
; ciclo máquina tarda 4 x 1/4MHz = 1 µs.
;
; En los comentarios, "cm" significa "ciclos máquina".
;
; ZONA DE DATOS *********************************************************************

    CBLOCK
    R_ContA                        ; Contadores para los retardos.
    R_ContB
    R_ContC
    ENDC
;
; RETARDOS de 4 hasta 10 microsegundos ---------------------------------------------------
;
; A continuación retardos pequeños teniendo en cuenta que para una frecuencia de 4 MHZ,
; la llamada a subrutina "call" tarda 2 ciclos máquina, el retorno de subrutina
; "return" toma otros 2 ciclos máquina y cada instrucción "nop" tarda 1 ciclo máquina.
;
Retardo_10micros                ; La llamada "call" aporta 2 ciclos máquina.
    nop                            ; Aporta 1 ciclo máquina.
    nop                            ; Aporta 1 ciclo máquina.
    nop                            ; Aporta 1 ciclo máquina.
    nop                            ; Aporta 1 ciclo máquina.
    nop                            ; Aporta 1 ciclo máquina.
Retardo_5micros                    ; La llamada "call" aporta 2 ciclos máquina.
    nop                            ; Aporta 1 ciclo máquina.
Retardo_4micros                    ; La llamada "call" aporta 2 ciclos máquina.
    return                        ; El salto del retorno aporta 2 ciclos máquina.
;
; RETARDOS de 20 hasta 500 microsegundos ------------------------------------------------
;
Retardo_500micros                ; La llamada "call" aporta 2 ciclos máquina.
    nop                            ; Aporta 1 ciclo máquina.
    movlw    d'164'                ; Aporta 1 ciclo máquina. Este es el valor de "K".
    goto    RetardoMicros        ; Aporta 2 ciclos máquina.
Retardo_200micros                ; La llamada "call" aporta 2 ciclos máquina.
    nop                            ; Aporta 1 ciclo máquina.
    movlw    d'64'                ; Aporta 1 ciclo máquina. Este es el valor de "K".
    goto    RetardoMicros        ; Aporta 2 ciclos máquina.
Retardo_100micros                ; La llamada "call" aporta 2 ciclos máquina.
    movlw    d'31'                ; Aporta 1 ciclo máquina. Este es el valor de "K".
    goto    RetardoMicros        ; Aporta 2 ciclos máquina.
Retardo_50micros                ; La llamada "call" aporta 2 ciclos máquina.
    nop                            ; Aporta 1 ciclo máquina.
    movlw    d'14'                ; Aporta 1 ciclo máquina. Este es el valor de "K".
    goto    RetardoMicros        ; Aporta 2 ciclos máquina.
Retardo_20micros                ; La llamada "call" aporta 2 ciclos máquina.
    movlw    d'5'                ; Aporta 1 ciclo máquina. Este es el valor de "K".
;
; El próximo bloque "RetardoMicros" tarda:
; 1 + (K-1) + 2 + (K-1)x2 + 2 = (2 + 3K) ciclos máquina.
;
RetardoMicros
    movwf    R_ContA                ; Aporta 1 ciclo máquina.
Rmicros_Bucle
    decfsz    R_ContA,F            ; (K-1)x1 cm (cuando no salta) + 2 cm (al saltar).
    goto    Rmicros_Bucle        ; Aporta (K-1)x2 ciclos máquina.
    return                        ; El salto del retorno aporta 2 ciclos máquina.
;
;En total estas subrutinas tardan:
; - Retardo_500micros:    2 + 1 + 1 + 2 + (2 + 3K) = 500 cm = 500 µs. (para K=164 y 4 MHz).
; - Retardo_200micros:    2 + 1 + 1 + 2 + (2 + 3K) = 200 cm = 200 µs. (para K= 64 y 4 MHz).
; - Retardo_100micros:    2     + 1 + 2 + (2 + 3K) = 100 cm = 100 µs. (para K= 31 y 4 MHz).
; - Retardo_50micros :    2 + 1 + 1 + 2 + (2 + 3K) =  50 cm =  50 µs. (para K= 14 y 4 MHz).
; - Retardo_20micros :    2     + 1     + (2 + 3K) =  20 cm =  20 µs. (para K=  5 y 4 MHz).
;
; RETARDOS de 1 ms hasta 200 ms. --------------------------------------------------------
;
Retardo_200ms                    ; La llamada "call" aporta 2 ciclos máquina.
    movlw    d'200'                ; Aporta 1 ciclo máquina. Este es el valor de "M".
    goto    Retardos_ms            ; Aporta 2 ciclos máquina.
Retardo_100ms                    ; La llamada "call" aporta 2 ciclos máquina.
    movlw    d'100'                ; Aporta 1 ciclo máquina. Este es el valor de "M".
    goto    Retardos_ms            ; Aporta 2 ciclos máquina.
Retardo_50ms                    ; La llamada "call" aporta 2 ciclos máquina.
    movlw    d'50'                ; Aporta 1 ciclo máquina. Este es el valor de "M".
    goto    Retardos_ms            ; Aporta 2 ciclos máquina.
Retardo_20ms                    ; La llamada "call" aporta 2 ciclos máquina.
    movlw    d'20'                ; Aporta 1 ciclo máquina. Este es el valor de "M".
    goto    Retardos_ms            ; Aporta 2 ciclos máquina.
Retardo_10ms                    ; La llamada "call" aporta 2 ciclos máquina.
    movlw    d'10'                ; Aporta 1 ciclo máquina. Este es el valor de "M".
    goto    Retardos_ms            ; Aporta 2 ciclos máquina.
Retardo_5ms                        ; La llamada "call" aporta 2 ciclos máquina.
    movlw    d'5'                ; Aporta 1 ciclo máquina. Este es el valor de "M".
    goto    Retardos_ms            ; Aporta 2 ciclos máquina.
Retardo_2ms                        ; La llamada "call" aporta 2 ciclos máquina.
    movlw    d'2'                ; Aporta 1 ciclo máquina. Este es el valor de "M".
    goto    Retardos_ms            ; Aporta 2 ciclos máquina.
Retardo_1ms                        ; La llamada "call" aporta 2 ciclos máquina.
    movlw    d'1'                ; Aporta 1 ciclo máquina. Este es el valor de "M".
;
; El próximo bloque "Retardos_ms" tarda:
; 1 + M + M + KxM + (K-1)xM + Mx2 + (K-1)Mx2 + (M-1) + 2 + (M-1)x2 + 2 =
; = (2 + 4M + 4KM) ciclos máquina. Para K=249 y M=1 supone 1002 ciclos máquina
; que a 4 MHz son 1002 µs = 1 ms.
;
Retardos_ms
    movwf    R_ContB                ; Aporta 1 ciclo máquina.
R1ms_BucleExterno
    movlw    d'249'                ; Aporta Mx1 ciclos máquina. Este es el valor de "K".
    movwf    R_ContA                ; Aporta Mx1 ciclos máquina.
R1ms_BucleInterno
    nop                            ; Aporta KxMx1 ciclos máquina.
    decfsz    R_ContA,F            ; (K-1)xMx1 cm (cuando no salta) + Mx2 cm (al saltar).
    goto    R1ms_BucleInterno    ; Aporta (K-1)xMx2 ciclos máquina.
    decfsz    R_ContB,F            ; (M-1)x1 cm (cuando no salta) + 2 cm (al saltar).
    goto    R1ms_BucleExterno     ; Aporta (M-1)x2 ciclos máquina.
    return                        ; El salto del retorno aporta 2 ciclos máquina.
;
;En total estas subrutinas tardan:
; - Retardo_200ms:    2 + 1 + 2 + (2 + 4M + 4KM) = 200007 cm = 200 ms. (M=200 y K=249).
; - Retardo_100ms:    2 + 1 + 2 + (2 + 4M + 4KM) = 100007 cm = 100 ms. (M=100 y K=249).
; - Retardo_50ms :    2 + 1 + 2 + (2 + 4M + 4KM) =  50007 cm =  50 ms. (M= 50 y K=249).
; - Retardo_20ms :    2 + 1 + 2 + (2 + 4M + 4KM) =  20007 cm =  20 ms. (M= 20 y K=249).
; - Retardo_10ms :    2 + 1 + 2 + (2 + 4M + 4KM) =  10007 cm =  10 ms. (M= 10 y K=249).
; - Retardo_5ms  :    2 + 1 + 2 + (2 + 4M + 4KM) =   5007 cm =   5 ms. (M=  5 y K=249).
; - Retardo_2ms  :    2 + 1 + 2 + (2 + 4M + 4KM) =   2007 cm =   2 ms. (M=  2 y K=249).
; - Retardo_1ms  :    2 + 1     + (2 + 4M + 4KM) =   1005 cm =   1 ms. (M=  1 y K=249).
;
; RETARDOS de 0.5 hasta 20 segundos ---------------------------------------------------
;
Retardo_20s                        ; La llamada "call" aporta 2 ciclos máquina.
    movlw    d'200'                ; Aporta 1 ciclo máquina. Este es el valor de "N".
    goto    Retardo_1Decima        ; Aporta 2 ciclos máquina.
Retardo_10s                        ; La llamada "call" aporta 2 ciclos máquina.
    movlw    d'100'                ; Aporta 1 ciclo máquina. Este es el valor de "N".
    goto    Retardo_1Decima        ; Aporta 2 ciclos máquina.
Retardo_5s                        ; La llamada "call" aporta 2 ciclos máquina.
    movlw    d'50'                ; Aporta 1 ciclo máquina. Este es el valor de "N".
    goto    Retardo_1Decima        ; Aporta 2 ciclos máquina.
Retardo_2s                        ; La llamada "call" aporta 2 ciclos máquina.
    movlw    d'20'                ; Aporta 1 ciclo máquina. Este es el valor de "N".
    goto    Retardo_1Decima        ; Aporta 2 ciclos máquina.
Retardo_1s                        ; La llamada "call" aporta 2 ciclos máquina.
    movlw    d'10'                ; Aporta 1 ciclo máquina. Este es el valor de "N".
    goto    Retardo_1Decima        ; Aporta 2 ciclos máquina.
Retardo_500ms                    ; La llamada "call" aporta 2 ciclos máquina.
    movlw    d'5'                ; Aporta 1 ciclo máquina. Este es el valor de "N".
;
; El próximo bloque "Retardo_1Decima" tarda:
; 1 + N + N + MxN + MxN + KxMxN + (K-1)xMxN + MxNx2 + (K-1)xMxNx2 +
;   + (M-1)xN + Nx2 + (M-1)xNx2 + (N-1) + 2 + (N-1)x2 + 2 =
; = (2 + 4M + 4MN + 4KM) ciclos máquina. Para K=249, M=100 y N=1 supone 100011
; ciclos máquina que a 4 MHz son 100011 µs = 100 ms = 0,1 s = 1 décima de segundo.
;
Retardo_1Decima
    movwf    R_ContC                ; Aporta 1 ciclo máquina.
R1Decima_BucleExterno2
    movlw    d'100'                ; Aporta Nx1 ciclos máquina. Este es el valor de "M".
    movwf    R_ContB                ; Aporta Nx1 ciclos máquina.
R1Decima_BucleExterno
    movlw    d'249'                ; Aporta MxNx1 ciclos máquina. Este es el valor de "K".
    movwf    R_ContA                ; Aporta MxNx1 ciclos máquina.
R1Decima_BucleInterno          
    nop                            ; Aporta KxMxNx1 ciclos máquina.
    decfsz    R_ContA,F            ; (K-1)xMxNx1 cm (si no salta) + MxNx2 cm (al saltar).
    goto    R1Decima_BucleInterno    ; Aporta (K-1)xMxNx2 ciclos máquina.
    decfsz    R_ContB,F            ; (M-1)xNx1 cm (cuando no salta) + Nx2 cm (al saltar).
    goto    R1Decima_BucleExterno    ; Aporta (M-1)xNx2 ciclos máquina.
    decfsz    R_ContC,F            ; (N-1)x1 cm (cuando no salta) + 2 cm (al saltar).
    goto    R1Decima_BucleExterno2    ; Aporta (N-1)x2 ciclos máquina.
    return                        ; El salto del retorno aporta 2 ciclos máquina.
;
;En total estas subrutinas tardan:
; - Retardo_20s:    2 + 1 + 2 + (2 + 4N + 4MN + 4KMN) = 20000807 cm = 20 s.
;            (N=200, M=100 y K=249).
; - Retardo_10s:    2 + 1 + 2 + (2 + 4N + 4MN + 4KMN) = 10000407 cm = 10 s.
;            (N=100, M=100 y K=249).
; - Retardo_5s:        2 + 1 + 2 + (2 + 4N + 4MN + 4KMN) =  5000207 cm =  5 s.
;            (N= 50, M=100 y K=249).
; - Retardo_2s:        2 + 1 + 2 + (2 + 4N + 4MN + 4KMN) =  2000087 cm =  2 s.
;            (N= 20, M=100 y K=249).
; - Retardo_1s:        2 + 1 + 2 + (2 + 4N + 4MN + 4KMN) =  1000047 cm =  1 s.
;            (N= 10, M=100 y K=249).
; - Retardo_500ms:    2 + 1     + (2 + 4N + 4MN + 4KMN) =   500025 cm = 0,5 s.
;            (N=  5, M=100 y K=249).

;    ===================================================================
;      Del libro "MICROCONTROLADOR PIC16F84. DESARROLLO DE PROYECTOS"
;      E. Palacios, F. Remiro y L. López.        www.pic16f84a.org
;       Editorial Ra-Ma.  www.ra-ma.es
;    ===================================================================
21/01/2010 #3


Respuesta: Programa para transforma sonido en assembler
Estoy empezando, esto es mucho para mi . No hay alguna forma mas sencilla?
21/01/2010 #4


Respuesta: Programa para transforma sonido en assembler
Si, si hay, pero me vas a tener que dar un tiempo hasta que me acerque al compu donde lo tengo guardado.

Saludos!
22/01/2010 #5


Respuesta: Programa para transforma sonido en assembler
Ok no pasa nada. Cuando puedas me lo dices
27/01/2010 #6


Respuesta: Programa para transforma sonido en assembler
Yah!
Disculpa la demora, pero aqui te tengo tu programa. Yo pensé que tenía 2, pero es uno solo. Nunca lo he usado, pero estoy bien seguro que funciona.

Saludoos!

Hola!
Además, esto. De hecho, de allí lo saqué.
Saludos!

Generar audio con PIC
Archivos Adjuntos
Tipo de Archivo: zip BTc PIC Sound.zip (780,9 KB (Kilobytes), 155 visitas)
05/08/2010 #7


Respuesta: Programa para transforma sonido en assembler
uau!! que buen aporte, voy a ponerle voces a mis aplicaciones con pic,
26/12/2010 #8


Soy nuevo en el foro, que buen aporte!!!!
Les agradecería algún modelo de circuito para reproducir el sonido.
Un abrazo
Respuesta
¿Tienes una mejor respuesta a este tema? ¿Quieres hacerle una pregunta a nuestra comunidad y sus expertos? Registrate

Foros de Electrónica » Diseño digital » Microcontroladores y sistemas embebidos

Powered by vBulletin® Version 3.8.4
Copyright ©2000 - 2017, Jelsoft Enterprises Ltd.
Search Engine Optimization by vBSEO ©2011, Crawlability, Inc.