Andres Cuenca

Los Amplificadores Operacionales (2)

Configuraciones basadas en los circuitos inversor y no inversor

El amplificador diferencial
Una tercera configuración del AO conocida como el amplificador diferencial, es una combinación de las dos configuraciones anteriores. Aunque está basado en los otros dos circuitos, el amplificador diferencial tiene características únicas. Este circuito, mostrado en la figura 4, tiene aplicadas señales en ambos terminales de entrada, y utiliza la amplificación diferencial natural del amplificador operacional.

Figura 4.
Para comprender el circuito, primero se estudiarán las dos señales de entrada por separado, y después combinadas. Como siempre Vd = 0 y la corriente de entrada en los terminales es cero.
Recordar que Vd = V(+) - V(-) ==> V(-) = V(+)
La tensión a la salida debida a V1 la llamaremos V01

y como V(-) = V(+)
La tensión de salida debida a V1 (suponiendo V2 = 0) valdrá:

Y la salida debida a V2 (suponiendo V1 = 0) será, usando la ecuación de la ganancia para el circuito inversor, V02

Y dado que, aplicando el teorema de la superposición la tensión de salida V0 = V01 + V02 y haciendo que R3 sea igual a R1 y R4 igual a R2 tendremos que:

por lo que concluiremos

que expresando en términos de ganancia:

que es la ganancia de la etapa para señales en modo diferencial
Esta configuración es única porque puede rechazar una señal común a ambas entradas. Esto se debe a la propiedad de tensión de entrada diferencial nula, que se explica a continuación.
En el caso de que las señales V1 y V2 sean idénticas, el análisis es sencillo. V1 se dividirá entre R1 y R2, apareciendo una menor tensión V(+) en R2. Debido a la ganancia infinita del amplificador, y a la tensión de entrada diferencial cero, una tensión igual V(-) debe aparecer en el nudo suma (-). Puesto que la red de resistencias R3 y R4 es igual a la red R1 y R2, y se aplica la misma tensión a ambos terminales de entrada, se concluye que Vo debe estar a potencial nulo para que V(-) se mantenga igual a V(+); Vo estará al mismo potencial que R2, el cual, de hecho está a masa. Esta muy útil propiedad del amplificador diferencial, puede utilizarse para discriminar componentes de ruido en modo común no deseables, mientras que se amplifican las señales que aparecen de forma diferencial. Si se cumple la relación

La ganancia para señales en modo común es cero, puesto que, por definición, el amplificador no tiene ganancia cuando se aplican señales iguales a ambas entradas.
Las dos impedancias de entrada de la etapa son distintas. Para la entrada (+), la impedancia de entrada es R1 + R2. La impedancia para la entrada (-) es R3. La impedancia de entrada diferencial (para una fuente flotante) es la impedancia entre las entradas, es decir, R1+R3.

El sumador inversor
Utilizando la característica de tierra virtual en el nudo suma (-) del amplificador inversor, se obtiene una útil modificación, el sumador inversor, figura 5.
Figura 5.
En este circuito, como en el amplificador inversor, la tensión V(+) está conectada a masa, por lo que la tensión V(-) estará a una masa virtual, y como la impedancia de entrada es infinita toda la corriente I1 circulará a través de RF y la llamaremos I2. Lo que ocurre en este caso es que la corriente I1 es la suma algebraica de las corrientes proporcionadas por V1, V2 y V3, es decir:

y también

Como I1 = I2 concluiremos que:

que establece que la tensión de salida es la suma algebraica invertida de las tensiones de entrada multiplicadas por un factor corrector, que el alumno puede observar que en el caso en que RF = RG1 = R G2 = R G3 ==> VOUT = - (V1 + V2 + V3)
La ganancia global del circuito la establece RF, la cual, en este sentido, se comporta como en el amplificador inversor básico. A las ganancias de los canales individuales se les aplica independientemente los factores de escala RG1, R G2, R G3,... étc. Del mismo modo, R G1, R G2 y R G3 son las impedancias de entrada de los respectivos canales.
Otra característica interesante de esta configuración es el hecho de que la mezcla de señales lineales, en el nodo suma, no produce interacción entre las entradas, puesto que todas las fuentes de señal alimentan el punto de tierra virtual. El circuito puede acomodar cualquier número de entradas añadiendo resistencias de entrada adicionales en el nodo suma.
Aunque los circuitos precedentes se han descrito en términos de entrada y de resistencias de realimentación, las resistencias se pueden reemplazar por elementos complejos, y los axiomas de los amplificadores operacionales se mantendrán como verdaderos. Dos circuitos que demuestran esto, son dos nuevas modificaciones del amplificador inversor.

El integrador
Se ha visto que ambas configuraciones básicas del AO actúan para mantener constantemente la corriente de realimentación, IF igual a IIN.
Figura 6
Una modificación del amplificador inversor, el integrador, mostrado en la figura 6, se aprovecha de esta característica. Se aplica una tensión de entrada VIN, a RG, lo que da lugar a una corriente Iin.
Como ocurría en el amplificador inversor, V(-) = 0, puesto que V(+) = 0, y por tener impedancia infinita toda la corriente de entrada Iin pasa hacia el condensador Cf, llamaremos a esta corriente If.
El elemento realimentador en el integrador es el condensador Cf. Por consiguiente, la corriente constante If, en Cf da lugar a una rampa lineal de tensión. La tensión de salida es, por tanto, la integral de la corriente de entrada, que es forzada a cargar Cf por el lazo de realimentación.
La variación de tensión en Cf es

lo que hace que la salida varíe por unidad de tiempo según:

Como en otras configuraciones del amplificador inversor, la impedancia de entrada es simplemente Rg
Obsérvese el siguiente diagrama de señales para este circuito

Por supuesto la rampa dependerá de los valores de la señal de entrada, de la resistencia y del condensador.
El diferenciador
Una segunda modificación del amplificador inversor, que también aprovecha la corriente en un condensador es el diferenciador mostrado en la figura 7.

En este circuito, la posición de R y C están al revés que en el integrador, estando el elemento capacitativo en la red de entrada. Luego la corriente de entrada obtenida es proporcional a la tasa de variación de la tensión de entrada:

De nuevo diremos que la corriente de entrada Iin, circulará por Rf, por lo que If = Iin
Y puesto que Vout= - If Rf Sustituyendo obtenemos

Obsérvese el siguiente diagrama de señales para este circuito


El seguidor de tensión
Una modificación especial del amplificador no inversor es la etapa de ganancia unidad mostrada en la figura 8


En este circuito, la resistencia de entrada se ha incrementado hasta infinito, y Rf es cero, y la realimentación es del 100%. Vo es entonces exactamente igual a Vi, dado que Es = 0. El circuito se conoce como "seguidor de emisor" puesto que la salida es una réplica en fase con ganancia unidad de la tensión de entrada. La impedancia de entrada de esta etapa es también infinita.
'Me Gusta': giovanniroggero