Aquí me he perdido, como es posible que el SNR baje tan drásticamente con mayor filtrado?, mi sentido común me dice todo lo contrario, no debería de aumentar el SNR con mayor filtrado?
Si, pero ante señales grandes y en el ejemplo que escogí (con 0,8 V RMS). Aunque parezca contrario a lo que uno primeramente imagina como físicamente posible.
Lo que sucede es que el Clase AB está muy débilmente polarizado (opera casi en Clase B, viendo el cruce por cero de la señal en la salida). Está solo con 10 mA por el par de salida, corriente cercana casi a la que toma la etapa de entrada (por el BC548C). Y como comenté, este Clase AB del ejemplo se perturba importantemente ante la aparición de los primeros ciclos de la señal de audio, bastante al contrario de lo que sucede en el Clase A. Eso se puede ver en las simulaciones.
Douglas Self, en su libro, sugiere que el SNR podría ser encontrado mediante análisis de espectro, que es lo que yo efectué, centrándome en la frecuencia fundamental de la señal de rectificación (100 Hz) y relacionándola a la señal de audio, obtenidas ambas a la salida de cada amplificador. Misma fuente de alimentación, misma señal de entrada y similar señal medida en la salida, solo que cambiando de operatividad y tipología.
Otra cosa que aparece como curiosa, aunque se puede intuir más afin a lo que realmente sucede, es la cadencia de la señal de audio, la cual difiere notoriamente entre un modo y otro de operación, más si el Clase AB está muy débilmente polarizado como el del ejemplo. Se analizó tanto con un filtrado como con otro y sucede más o menos similar efecto, ya que no depende de ese parámetro. La señal en el Clase A decae mucho más progresivamente en el tiempo que en el Clase AB, pero debido a que en el Clase AB se debe vencer el umbral de conducción de los transistores de salida (robando en ese "trabajo", cuando hay poco idle, parte de amplitud de la señal) y, en parte también, porque no hay una efectiva realimentación que ayude a corregir los problemas del cruce por cero de la señal (por lo extremo básico del ejemplo). Más pequeña se hace la señal en su amortiguación de amplitud, más diferencia se aprecia en relación a la otra modalidad de operación. Todo se tiende a subsanar parcialmente con un aumento de la polarización por el par de salida (cosa que he podido observar cambiando valores de idle en la simulación a no mucho más del 40 % más de lo previamente fijado).
En ambos grupos de gráficas, las curvas rojas se corresponden al Clase AB, mientras que las curvas azules, al Clase A.
Sería interesante poder analizar varios diseños de Clase AB, para ver si se repiten los efectos vistos en estos dos muy básicos ejemplos. Douglas Self no menciona nada al respecto, dentro de lo que yo haya leído. No sé si pueda ser una realidad igualmente extensiva a todos los diseños operados en Clase AB, acorde estén óptimamente polarizados, sub o sobrepolarizados.
Lo que podría hacer en mi confinamiento obligado es generar los archivos de audio, similar a los que ya subí, pero con el Clase AB, para poderlos contrastar con los del Clase A. LabVIEW y Audacity me esperan...